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Abstract: The requirement of N = 1 supersymmetry for M-theory backgrounds of the

form of a warped product M ×w X, where X is an eight-manifold and M is three-

dimensional Minkowski or AdS space, implies the existence of a nowhere-vanishing Ma-

jorana spinor ξ on X. ξ lifts to a nowhere-vanishing spinor on the auxiliary nine-manifold

Y := X × S1, where S1 is a circle of constant radius, implying the reduction of the struc-

ture group of Y to Spin(7). In general, however, there is no reduction of the structure

group of X itself. This situation can be described in the language of generalized Spin(7)

structures, defined in terms of certain spinors of Spin(TY ⊕ T ∗Y ). We express the con-

dition for N = 1 supersymmetry in terms of differential equations for these spinors. In

an equivalent formulation, working locally in the vicinity of any point in X in terms of

a ‘preferred’ Spin(7) structure, we show that the requirement of N = 1 supersymmetry

amounts to solving for the intrinsic torsion and all irreducible flux components, except for

the one lying in the 27 of Spin(7), in terms of the warp factor and a one-form L on X (not

necessarily nowhere-vanishing) constructed as a ξ bilinear; in addition, L is constrained to

satisfy a pair of differential equations. The formalism based on the group Spin(7) is the

most suitable language in which to describe supersymmetric compactifications on eight-

manifolds of Spin(7) structure, and/or small-flux perturbations around supersymmetric

compactifications on manifolds of Spin(7) holonomy.
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1. Introduction

It has been observed (starting with [1]), in connection to supergravity compactifications,

that the concept of G-structures is a natural generalization of special-holonomy to the case

where fluxes are present. Supersymmetry implies the existence of a nowhere-vanishing

spinor on the internal manifold X, thereby reducing the structure group of X to G. In the

presence of fluxes, X is no longer special-holonomy and the spinor is no longer covariantly

constant: its failure to be such is parametrized by the (flux-dependent) intrinsic torsion

of the Levi-Civita connection associated with the G-invariant metric on X. Moreover, the

intrinsic torsion can be decomposed in irreducible G-modules, giving a characterization

of X.
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More recently, it was realized [2 – 7] that generic spinor Ansätze for the supersymmetry

parameter naturally lead to the concept of generalized G-structures [8]. Roughly-speaking,

generalized G-structures arise as follows: typically there will be two nowhere-vanishing

spinors ε± in the Ansatz for the supersymmetry parameter, each one inducing a reduction

of the structure group to a subgroup G±. Noting, in addition, that there is an isomorphism

between bispinors on X and spinors of TX ⊕ T ∗X, we conclude that ρ := ε+ ⊗ ε− (which

can also be thought of — by Fierzing — as a sum of forms on X) induces a reduction of

the structure group of TX ⊕ T ∗X to G+ × G− ⊂ Spin(TX ⊕ T ∗X).

In addition to the reduction of the structure group of TX ⊕ T ∗X, supersymmetry

implies that ρ should satisfy certain differential equations. For type II supergravities and

for X a six- or seven-dimensional manifold, these equations have been identified, in the

case where the Ramond-Ramond fields are zero, with certain integrability conditions for

the generalized structures [2, 4]. Recently it has been possible to give a satisfactory math-

ematical description of the RR forms [7] by a generalization of the Hitchin functional [9]

in which the RR forms appear as constraints. The role of the Hitchin functional in various

topological theories is explored in [10 – 14].

Although a great deal is known about the connection of supersymmetry to generalized

structures in six and seven dimensions, the case of eight-dimensional manifolds remains

rather obscure (see however [15, 16]). In the present paper we wish to remedy the situ-

ation by examining the conditions for the most general N = 1 three-dimensional AdS or

Minkowski vacua in M-theory. An immediate consequence of supersymmetry is that associ-

ated with the eight-dimensional internal manifold X there is a nine-manifold Y := X ×S1,

such that Y supports a generalized Spin(7) structure on the sum of its tangent and cotan-

gent bundles. The structure is given in terms of certain bispinors (spinors of Spin(9, 9))

which are constrained to satisfy certain differential equations.

In a more conventional (equivalent) formulation, we show that N = 1 supersymmetry

implies the existence of a nowhere-vanishing Majorana spinor on X. This lifts to a nowhere-

vanishing spinor on Y = X ×S1 and hence implies the reduction of the structure group of

Y to Spin(7). Note that, in general, X does not support nowhere-vanishing Majorana-Weyl

spinors and the structure group of X itself is not, in general, reduced. However, working

locally in an open set of X, one can still decompose all fields in terms of irreducible

Spin(7)-modules. We are then able to solve for the intrinsic torsion and all irreducible flux

components, except for the one lying in the 27 of Spin(7) which cannot be determined by

the supersymmetry equations, in terms of the warp factor and a certain one-form L on X

(constructed as a ξ bilinear). L is not necessarily nowhere-vanishing, unless the structure

group is further reduced to G2. In addition, L is constrained to satisfy a pair of differential

equations.

The case examined here is an alternative formulation to the works of [17, 18], which

assume the existence of at least one nowhere-vanishing Majorana-Weyl spinor, as well as

of [19] (see also [20]). The authors of reference [19] perform their analysis by decom-

posing the flux and the intrinsic torsion of the internal manifold in terms of irreducible

G2 representations. These decompositions are valid only outside the zero locus of both

Majorana-Weyl spinors ξ±, where ξ = ξ+ ⊕ ξ−, and they break down at the points where
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either of ξ± vanishes. The analysis of [19] is valid globally only if there is a further reduc-

tion of the structure group of X to G2. Note, however, that in open sets where neither of

ξ± vanishes, the analyis of [19] is perfectly sufficient to determine the most general local

form of the geometry. In such opens sets, our formulæ in section 3.1 below should reduce

to the corresponding formulæ given in [19], to the extent they overlap (some of the flux

components were not given explicitly in [19]).

There are certain cases in which it is advantageous to work with a Spin(7) rather than

with a G2 structure. Clearly this is true if one wishes to consider supersymmetric M-theory

compactifications on eight-manifolds with a global Spin(7) structure. A (very) special case

thereof is compactifications on eight-manifolds with Spin(7) holonomy. Also, even in the

generic case of compactifications on eight-manifolds X where there is no reduction of the

structure group of X to Spin(7), it is still advantageous to work with a Spin(7) strucutre

if one wishes to describe the local geometry in the vicinity of a point where either of ξ±

vanishes. Put in another way: let P be an arbitrary point in X. There is always an open

set UP ⊂ X such that P ∈ UP and at least one of ξ± is nowhere-vanishing in UP . I.e. for

any point P , there is always an open patch UP containing P , such that the decomposition

in Spin(7) modules is valid in UP . The same is not true for G2, as can be seen by taking

P to be a point where one of ξ± vanishes.

The plan of this paper is as follows: section 2 includes some general background on

G-structures and, more particularly, Spin(7)-structures. In section 3 we perform the super-

symmetry analysis in terms of (ordinary) Spin(7)-structures on X. As an explicit exam-

ple we have also included a small-flux perturbation around the special-holonomy solution

involving the non-compact Spin(7)-manifold of [21, 22]. Section 4 includes the supersym-

metry analysis in terms of generalized Spin(7) structures. The final section includes some

discussion of future directions. To improve the presentation of the paper, almost all of the

technical details of the supersymmetry analysis have been relegated to the appendices.

2. G-structures and intrinsic torsion

In this section we give a brief review of G-structures and intrinsic torsion with emphasis

on the points relevant to our case.

Quite generally, the requirement of supersymmetry for backgrounds of the form M×w

X, where M is maximally-symmetric, implies the existence of a nowhere-vanishing spinor

ξ satisfying a Killing equation

∇mξ = Gmξ , (2.1)

where ∇m is the Levi-Civita connection and Gm is a vector field on X taking values

in the Clifford algebra Cliff(d), d := dimR(X). The exact expression depending on the

supergravity under consideration, Gm is determined by the fluxes (i.e. antisymmetric tensor

fields) on X and is generally nonzero. If Gm vanishes identically, X is a special-holonomy

manifold.

Typically, the existence of ξ implies the reduction of the structure group to a subgroup

G ⊂ Spin(d) and the manifold X admits a G-structure. The latter is characterized by

– 3 –



J
H
E
P
0
4
(
2
0
0
6
)
0
2
7

the intrinsic torsion, which is a measure of the failure of ξ to be covariantly constant with

respect to the connection associated with the metric induced by the G-structure. From

what has been just said, it is clear that the intrinsic torsion could be read off of Gm in

equation (2.1) above. Hence the result that the intrinsic torsion can be expressed in terms

of the fluxes. Schematically:

flux −→ Gm −→ intrinsic torsion . (2.2)

Typically, the Killing spinor ξ gives rise to certain G-invariant forms (Φ), constructed out

of ξ as spinor bilinears. It is an important result that the intrinsic torsion (ω) can also be

read off of the exterior derivatives of these forms:

∇ξ ←→ ω ←→ dΦ . (2.3)

Having a dictionary between these two alternative descriptions is very useful in practice,

as it allows us to express the supersymmetry equation (2.1) in purely algebraic form. We

will see how this works explicitly in section 3.1.

The intrinsic torsion can be decomposed in terms of irreducible G-modules: ω ∈ Λ1 ⊗
g
⊥, where g

⊥ is the complement of g := Lie(G) inside spin(d). Special classes of manifolds

arise when some of these modules vanish; for example when all the modules vanish the

manifold is special-holonomy. The construction/classification of manifolds according to

their intrinsic torsion is a difficult problem which still remains largely open. There is

of course great interest from the physics point-of-view because of the connection to flux

compactifications. In some cases it is not known if examples of manifolds exist in all classes

of possible combinations of nonzero modules.

2.1 Spin(7) structure

Let us now see how the general discussion of G-structures applies to the case where X is an

eight-manifold. The main result explained here is that the existence of a nowhere-vanishing

Majorana spinor on X, ξ = ξ+⊕ξ− where ξ+ (ξ−) is of positive (negative) chirality, induces

the reduction of the structure group of the associated nine-manifold Y := X × S1, where

S1 is a circle of constant radius, to Spin(7).

A Spin(7) structure on X is a principal sub-bundle of the frame bundle over X, with

fiber the subgroup Spin(7) of GL(8, R). We can give alternative description of the Spin(7)

structure as follows [23]: let x1, . . . , x8 be the coordinates of R
8. The self-dual four-form

Φ+
0 := e1234 + e1256 + e1278 + e1357 − e1368 − e1458 − e1467

− e2358 − e2367 − e2457 + e2468 + e3456 + e3478 + e5678 , (2.4)

where eijkl denotes dxi ∧ dxj ∧ dxk ∧ dxl, is fixed by Spin(7) ⊂ GL(8, R). At each point

p ∈ X let us define ApX to be the subset of four-forms Φp ∈ Λ4T ∗
p X for which there exists

an isomorphism between TpX and R
8 such that Φp is identified with Φ+

0 . It follows that

ApX is isomorphic to GL(8, R)/Spin(7). Let AX be the bundle over X with fiber ApX

for each p ∈ X. We say that a four-form Φ on X is admissible if Φp ∈ ApX for each p ∈ X.
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In other words, admissible forms are those that can be ‘reached’ from Φ+
0 , at each point in

X. It follows that there is a 1-1 correspondence between Spin(7) structures and admissible

four-forms Φ ∈ AX.

The isotropy group of a nonzero Majorana-Weyl spinor of Spin(8), is Spin(7). This

simply follows from the fact that under Spin(7) ⊂ Spin(8) the chiral spinor representation

of Spin(8) decomposes as 8 → 7 + 1, i.e. there is a singlet in the decomposition. Hence a

nowhere-vanishing Majorana-Weyl spinor of Spin(8) induces a reduction of the structure

group of X to Spin(7). An equivalent way to understand the reduction of the structure

group is by noting that there is a nowhere-vanishing self-dual four-form which can be

constructed as a bilinear of the chiral spinor.

Let I± be the isotropy groups of ξ±. The isotropy group I+ ∩ I− of ξ = ξ+ ⊕ ξ−

induces a local reduction of the structure group. If both Majorana-Weyl spinors ξ± are

nowhere-vanishing, the structure group of X reduces to the common subgroup of the two

Spin(7) structures: Spin(7)+ ∩ Spin(7)− = G2. The reduction of the structure group to G2

can be deduced alternatively from the fact that in this case there exist a nowhere-vanishing

vector and a three-form on X, which can be constructed as a bilinears of ξ+ and ξ−.

In general, both chiral spinors may have zeros. At a point where ξ+ (ξ−) vanishes,

I+ ( I−) is enhanced to Spin(8) and the isotropy group of ξ = ξ+ ⊕ ξ− is enhanced to

I+ ∩ I− = Spin(7)∓. This, however, does not induce a reduction of the structure group to

Spin(7) unless, as explained in the previous paragraph, X supports a nowhere-vanishing

Majorana-Weyl spinor. Roughly-speaking, the isotropy group of ξ is not, in general, a fixed

Spin(7) subgroup of Spin(8) — as is required for a reduction of the structure group: as one

moves around in X, I+ ∩ I− ‘rotates’ inside Spin(8).

Nevertheless, it is possible to translate this situation to an honest Spin(7) reduction of

the structure group not of X itself, but of an associated nine-manifold. First, let us recall

some useful facts about Pin vs Spin groups. The reader can consult, e.g., [24] for more

details. The group Pin(n) sits inside Cliff(n), therefore the irreducible representations of

Cliff(n) restrict to representations of Pin(n) — which actually turn out to be irreducible

as well. In particular, the real irreducible representation of Pin(8) is the restriction of

the real irreducible representation of Cliff(8) — the sixteen-dimensional Majorana spinor

in eight dimensions. Similarly, since Spin(n) sits inside Cliff0(n) (the even part of the

Clifford algebra), the irredicible representations of Cliff0(n) restrict to representations of

Spin(n) — which also turn out to be irreducible. Furthermore, there is an important

isomorphism:

Cliff(n) ∼= Cliff0(n + 1) . (2.5)

Coming back to physics: we are considering M-theory compactifications on an eight-

manifold X. Supersymmetry imposes the existence of a nowhere-vanishing real pinor ξ

on X. Tensoring X by a constant circle S1, we obtain a compact nine-dimensional prod-

uct manifold Y := X × S1. As can be seen from (2.5), the nowhere-vanishing pinor

ξ on X lifts to a nowhere-vanishing spinor on Y in the real, sixteen-dimensional irre-

ducible representation of Spin(9). Of course ξ, thought of as a spinor on Y , does not
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depend on the co-ordinate of S1. It is well-known that the existence of a nowhere-

vanishing spinor on a nine-manifold Y induces the reduction of the structure group of

Y to Spin(7).1

Alternatively, the reduction of the structure group of Y can be understood as follows:

Since ξ is nowhere-vanishing, the Majorana spinors ε± := 1√
2
(ξ+ ± ξ−) (the normalization

is for later convenience) are also nowhere-vanishing and each of them induces a reduction

of the structure group of Y to Spin(7). At the points in Y where ε± are not parallel, the

isotropy group of ε± is reduced to G2 = Spin(7)∩Spin(7). However, ε+ becomes parallel to

ε− precisely at the points where either of ξ± vanishes. At these points the isotropy group

is enhanced to Spin(7). This point-of-view is better suited for the description in terms of

generalized Spin(7) structures, which we introduce in section 4.1 below.

The topological obstruction to the existence of a nowhere-vanishing Majorana-Weyl

spinor on X is known [25, 26]: it is equivalent to the condition that the Euler number of

X be given by

χ(X) = ±1

2

∫

X

(
p2 −

1

4
p2
1

)
, (2.6)

where p1,2 are the first and second Pontrjagin forms. The sign on the right-hand side of the

equation above depends on the chirality of the nowhere-vanishing spinor. As is it follows

immediately from (2.6), requiring that nowhere-vanishing Majorana-Weyl spinors of both

chiralities exist, leads to the condition that the Euler number of X vanishes. This, of course,

is exactly the topological condition for the existence of a nowhere-vanishing vector field on

X. Indeed, a vector field can be constructed as a bilinear of ξ+ and ξ− and, interestingly,

equations (2.6) can be related to the condition χ(X) = 0 by a certain triality rotation [26].

As we have seen, in this case there is a reduction of the structure group to G2. In the

generic case, although there is a nowhere-vanishing Majorana spinor ξ = ξ+ ⊕ ξ− on X,

both ξ± may have zeros; hence X need not satisfy equation (2.6).

3. N = 1 supersymmetry

The starting point of our analysis is the supersymmetry equations given in (3.5)–(3.8)

below. We will now describe the Anszätze leading up to these equations, as well as some

basic background on eleven-dimensional supergravity in order to establish conventions.

This brief review follows [19].

The field content of eleven-dimensional supergravity consists of a metric, a Majo-

rana vector-spinor (gravitino) and a four-form field strength G. We shall consider eleven-

dimensional M-theory backgrounds of the form of a warped product M ×w X, where X

is an eight-manifold and M is three-dimensional Minkowski or AdS space. Explicitly, the

metric Ansatz reads

ds2
11 = e2∆(ds2

3 + gmndxmdxn) , (3.1)

1Recall that Spin(9) acts transitively on the unit sphere in sixteen dimensions, S15 ∼= Spin(9)/Spin(7),

and that a real, sixteen-dimensional unit spinor on Y implies the existence of a global section of the sphere

bundle over Y with fiber S15.
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where e2∆ is the warp factor and ds2
3 is the metric on M. For the convenience of the

reader, we follow the notation of [19]. The most general four-form flux Ansatz respecting

three-dimensional covariance reads

G = e3∆(F + V ol3 ∧ f) , (3.2)

where V ol3 is the volume element along the noncompact directions and f (F ) is a one-form

(four-form) on X. Finally, the eleven-dimensional supersymmetry parameter ζ splits into

a direct product of a Majorana spinor ψ on M and a spinor ξ = ξ+ ⊕ ξ− on X:

ζ = e−
∆
2 ψ ⊗ (ξ+ ⊕ ξ−) . (3.3)

More precisely, ξ is a section of the real spin sub-bundle S+
R
⊕S−

R
on X, where S+ ⊕ S− is

the spin bundle on X and S± = S±
R
⊗ C. Furthermore, since M is Minkowski or AdS, ψ

is constrained to satisfy

∇µψ + mγµψ = 0 , (3.4)

where m is a massive parameter proportional to the inverse radius of M. Substituting our

Ansätze into the supersymmetry transformations of eleven-dimensional supergravity, we

arrive at the following equations.

Internal gravitino:

0 = ∇mξ+ +
1

24
Fmpqrγ

pqrξ− − 1

4
fnγn

mξ+ − mγmξ− (3.5)

0 = ∇mξ− +
1

24
Fmpqrγ

pqrξ+ +
1

4
fnγn

mξ− + mγmξ+ . (3.6)

External gravitino:

0 =
1

2
γm∂m∆ξ+ − 1

288
Fmpqrγ

mpqrξ− − 1

6
γnfnξ+ + mξ− (3.7)

0 =
1

2
γm∂m∆ξ− − 1

288
Fmpqrγ

mpqrξ+ +
1

6
γnfnξ− − mξ+ . (3.8)

We have thus rewritten the eleven-dimensional supersymmetry transformations purely in

terms of fields on X.

In addition to the supersymmetry equations, a solution of eleven-dimensional super-

gravity should satisfy the Bianchi identities and the equations-of-motion. It can be shown

that these take the form2

0 = d(e3∆F )

0 = e−6∆d(e6∆ ? f) − 1

2
F ∧ F

0 = e−6∆d(e6∆ ? F ) − f ∧ F . (3.9)

2The analysis of [19] suggests that the last line in (3.9) may be redundant, i.e. it may follow from the

supersymmetry equations and the remaining equations in (3.9). We thank D. Martelli for discussions on

this point.
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One can show that, under a certain mild condition which is satisfied for the backgrounds

considered in this paper, the supersymmetry equations together with the Bianchi identi-

ties and equations-of-motion (3.9) imply the Einstein equations [27]. Similar integrability

statements also hold for IIA [28] and IIB [29] supergravities.

Note that setting m = 0 excludes any solutions with nonzero fluxes if X is smooth

and compact. As noted in [19], this can be seen immediately from the scalar part of the

Einstein equation:

e−9∆
¤e9∆ − 3

2
|F |2 − 3|f |2 + 72m2 = 0 . (3.10)

Integrating by parts gives f , F = 0. This no-go ‘theorem’ can be evaded by allowing the

equations-of-motion and/or Bianchi identities to be modified, e.g. by introducing source

terms or higher-order curvature corrections.

A well-known higher-order correction is the one related to the M five-brane anomaly

[30]

d ? G +
1

2
G ∧ G = βX8 , (3.11)

where β is a constant of order l6Planck and X8 is proportional to the same combination

of Pontrjagin forms appearing on the right-hand side of (2.6). However, generally it is

inconsistent to only include the correction (3.11) without considering the corresponding

order-l6Planck corrections to the supersymmetry equations. The latter corrections are, un-

fortunately, unknown to date.3

The implications of the supersymmetry equations above are examined in section 4.1

from the point of view of generalized Spin(7) structures. The more conventional approach

is pursued in section 3.1. Before we close this section, let us make an observation which

will be important in the following: as we explain in appendix D, it follows from (3.5), (3.6)

that the Majorana spinor ξ has constant norm, which we can normalize to unity without

loss of generality:

|ξ|2 = |ξ+|2 + |ξ−|2 = 1 . (3.12)

This equation was first noticed in [19].

3.1 Analysis

It follows from equation (3.12) that at each point p in X at least one of ξ±, let us say ξ+

for concreteness, is non-vanishing. In an open set around p, we can parameterize:

ξ+ =
1√

1 + L2
η

ξ− =
Lm√
1 + L2

γmη , (3.13)

3In certain cases, e.g. compactification on ‘large’ eight-manifolds, it is in fact consistent to ignore all

higher-order corrections except for the one in (3.11), see [31] for a detailed argument.
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where η has unit norm: |η|2 = 1. Note that the one-form L can be thought of as a ξ+, ξ−

bilinear. Moreover, we can define a self-dual four-form Φ as an η-bilinear via4

Φmpqr := ηγmpqrη . (3.14)

As was explained in detail in section 2.1, the existence of the four-form defined in (3.14)

above induces a Spin(7)-structure on X; therefore, one can decompose all fields in terms of

irreducible representations of Spin(7). As was mentioned in section 2, it is very useful to be

able to translate back and forth between the spinor and the G-structure language; in this

way the supersymmetry equations can be expressed as a set of purely algebraic relations.

For the case at hand, the schematic equation (2.3) is nothing but the statement that the

following two equations are equivalent:

∂[mΦpqrs] = −8Φ[mpqrω
1
s] −

4

15
εmpqrs

ijkω2
ijk

∇mη =
{

ω1
nγn

m + ω2
mpqγ

pq
}

η , (3.15)

where ω1 transforms in the 8 of Spin(7) while ω2 transforms in the 48. Note that dΦ being

a five-form it transforms in the 8 ⊕ 48 of Spin(7), hence the decomposition on the right-

hand side of the first line of (3.15). ω1,2 generate the two modules of the intrinsic torsion

of a manifold of Spin(7) structure [32]. The equivalence of the two equations in (3.15), is

proven in appendix E.

Skipping all the details of the derivation, which can be found in appendix D, the

supersymmetry conditions are equivalent to the following equations: the one-form L is

constrained to satisfy

d
(
e3∆ L

1 + L2

)
= 0

e−12∆ ? d ?
(
e12∆ L

1 + L2

)
− 4m

1 − L2

1 + L2
= 0 , (3.16)

where here and in the remainder of this paper the Hodge star is taken with respect to

the internal eight-dimensional space. Moreover, all flux components except for the 27

4In our conventions the real spinor η satisfies η† = ηTrC, where C is the charge-conjugation matrix.

We use C to raise/lower indices on the gamma-matrices, so that the notation ηγmη is a shorthand for

ηTr(Cγm)η, etc.
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component of F are solved for in terms of L and the warp factor:

f = e−3∆d
(
e3∆ 1 − L2

1 + L2

)
+ 8m

L

1 + L2

1

12
F 1 = e−3∆Li∂i

( e3∆

1 + L2

)
− m

3 − L2

1 + L2

1

96
F 7

rs = −e−3∆(P 7)pq
rsLp∂q

( e3∆

1 + L2

)

1

24
F 35

mn = −∇(mLn) −
1

4
Φ(m

ijk(L ⊗ F 27)48

n)ijLk +
3

7(1 + L2)2

(
LmLn +

L2

6
gmn

)
Li∇iL

2

− 9

7(1 + L2)

{
LmLn +

7 + 8L2

6
gmn

}
Li∇i∆ +

1

(1 + L2)2
L(m∂n)L

2

+
3L2

1 + L2
L(m∂n)∆ +

m

14(1 + L2)

{
8(L2 − 3)LmLn + (7 + 3L2 − 8L4)gmn

}
,

(3.17)

where the explicit decomposition of F in terms of irreducible representations of Spin(7) and

the explanation of the definitions entering the equations above, are given in the appendix.

As noted in the introduction, in open sets where neither of ξ± vanishes, the above equations

should reduce to the corresponding formulæ given in [19], to the extent they overlap (some

of the flux components were not given explicitly in [19]). Finally, the intrinsic torsion is

determined via

ω1
m =

m

2
Lm +

3

4
∂m∆ +

1

168
(LmF 1 − LiF 7

im)

ω2
mpq =

1

192
(L ⊗ F 7)48

mpq +
1

4
(L ⊗ F 27)48

mpq . (3.18)

3.2 Small-flux approximation

A special solution to the supersymmetry equations (3.5)–(3.8) the Bianchi identities and

the equations-of-motion (3.9), is obtained when the warp factor and all flux vanishes (∆, f ,

F = 0), M is three-dimensional Minkowski space (m = 0) and X is a manifold of Spin(7)

holonomy (ω1,2 = 0). In this section we would like to perform a small perturbation around

the special-holonomy solution; this amounts to a small-flux approximation. Note that this

is an expansion around the point where the G2 = Spin(7)+ ∩ Spin(7)− structure breaks

down, and so it cannot be described by the formalism of [19].

For each field S, let us make a perturbative expansion

S =
∑

n=0

S(n)εn , (3.19)

where ε is a small parameter, so that the special-holonomy solution is recovered in the

ε → 0 limit. Equations (3.17) determine the flux components:

F 1 = −36m(1)ε + O(ε2)

F 7

mn = O(ε2)

F 35

mn =
(
− 24∇(mL

(1)
n) + 12gmnm(1)

)
ε + O(ε2) , (3.20)
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where the metric and the Levi-Civita connection above are those of the unperturbed special-

holonomy solution. The 27 component of the flux is of order O(ε), but is otherwise

unrestricted by the supersymmetry equations. Moreover, equations (3.18) give

ω1
m =

3

4
∂m∆(1) + O(ε2)

ω2
mpq = O(ε2) . (3.21)

It follows from the form of the intrinsic torsion (see e.g. [33]) that to order O(ε2) the

eight-manifold is conformally special-holonomy. Finally, to order O(ε2), equations (3.16)

are equivalent to

∇mL(1)
m = 4m(1)

∇[mL
(1)
n] = 0 , (3.22)

where again the Levi-Civita connection above is that of the special-holonomy metric. In-

tegrating the first line by parts in the case where X is smooth and compact, we conclude

that m(1) = 0. By the same reasoning, it can be seen by induction that m vanishes to all

orders in ε. It follows that, as noted in section 3, all flux vanishes and we get back the

special-holonomy solution.

Nontrivial solutions can be obtained if X is noncompact. In this case equations (3.22)

are solved for

L(1)
m = ∂mφ

¤φ = 4m(1) , (3.23)

where φ is a scalar on X with dimensions of length and the box operator is taken with

respect to the unperturbed special-holonomy metric. The Bianchi identities and the

equations-of-motion impose the conditions that ∆(1) should be harmonic and that F 27

should be closed. Neglecting corrections of order O(ε2), it can be shown that there are no

further conditions.5

As an explicit example, let us consider a small perturbation around the noncompact

Spin(7)-holonomy metric of reference [21, 22]:

ds2 =
(
1 −

( l

r

)10/3)−1
dr2 +

9

100
r2

(
1 −

( l

r

)10/3)
(σi − Ai)2 +

9

20
r2dΩ2

4 , (3.24)

5To arrive at this result the only nontrivial step is to prove that Im1...m5
:= Φ[m1...m3

pRm4m5],p
qLq

vanishes, where the Riemann tensor is with respect to the special-holonomy connection. This can be

seen as follows: for fixed m, n, Rmn,pq can be viewed as an antisymmetric matrix with indices p, q; i.e. it

transforms in the 21 + 7 of spin(7). However, since the spinor η is parallel with respect to the connection,

it follows that Rmn,pqγ
pqη = 0 and hence the 21 component is projected out while the 7 component is

set to zero (cf. equation (B.6)). I.e. for fixed m, n (or for fixed p, q, thanks to the symmetry properties of

the Riemann tensor) Rmn,pq transforms in the 21 of spin(7). Furthermore, as follows from the symmetry

of the free indices and the previous discussion, Rmn,p

qLq transforms in the 21 ⊗ 8 = 8 ⊕ 48 ⊕ 112. On

the other hand, Im1...m5
is a five-form and hence it transforms in the 8 ⊕ 48 of spin(7); therefore the 112

representation is projected out. The remaining 8 ⊕ 48 representations are generated by R[mnp]
qLq , which

vanishes by virtue of the symmetries of the Riemann tensor, and gmnRp

qLq , which vanishes by virtue of

the fact that every manifold of special holonomy is Ricci-flat. It follows that Im1...m5
vanishes.
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where l ≤ r < ∞, dΩ2
4 is the metric of the unit four-sphere S4, {σi; i = 1, 2, 3} are

left-invariant SU(2) one-forms and Ai is the connection of a Yang-Mills instanton on S4.

Moreover, let us assume that φ = φ(r). For r À l, the solution to equation (3.23) behaves as

φ ∼ Q1 + Q2
1

δ2
+ O(δ) ,

where δ := l/r and Q1,2 are constants (Q2 depends on m). On the other hand, when r

approaches l we have

φ ∼ Q′
1 + Q′

2

(1

δ
+

8

3
log(δ)

)
+ O(δ) ,

where Q′
1,2 are constants (Q′

2 depends on m) and δ := r/l − 1. In conclusion: for m 6= 0

(i.e. for M AdS), L2 ∼ |∂φ|2 blows up near l, ∞, which is contrary to our assumption

that L is perturbatively small. Hence, the solution can only be trusted for intermediate

distances 1/ε À r/l À ε. Note however that for m = 0 (i.e. for M Minkowski) Q2 vanishes

and the solution to (3.23) is regular for large distances r/l À ε.

4. Generalized G-structures

In this section, after some preliminaries, we give the definition of generalized Spin(7) struc-

tures in nine dimensions and explain how they arise naturally in the context of supersym-

metric M-theory compactifications on eight-manifolds. Generalized G-structures were first

introduced in [8]. Generalized Spin(7) structures in eight dimensions were first examined

by F. Witt in [15].

Consider the direct sum of the tangent and cotangent bundle T ⊕T ∗ of a d-dimensional

manifold X. There is a natural action of T ⊕ T ∗ on forms, whereby every vector acts by

contraction and every form by exterior multiplication. Explicitly: if V is a vector on X

and U , Ω are forms, we define

(V + U) · Ω = ιV Ω + U ∧ Ω . (4.1)

As this action squares to the identity, there is an associated Clifford algebra Cliff(T ⊕ T ∗)

and an induced isomorphism

Cliff(T ⊕ T ∗) ≈ End(Λ∗) . (4.2)

A basis of the Clifford algebra on T ⊕ T ∗

{γm, γn} = 0; {γm, γn} = 0; {γm, γn} = δm
n (4.3)

is given explicitly by γm := dxm∧, γn := ιn. It follows from the isomorphism (4.2) above

that (sums of) forms on X can be identified with spinors of T ⊕ T ∗. Moreover, the latter

can be thought of as bispinors on X. We thus obtain

forms ←→ spinors on T ⊕ T ∗ ←→ bispinors on X . (4.4)

The identification of sums of forms with bispinors is, of course, explicitly realized by Fierz-

ing.
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4.1 Generalized Spin(7) structures

Coming back to our eight-dimensional case, we define the following bispinors

Φ± := ξ± ⊗ ξ± =
1

8
P±

{
Φ± +

1

2 · 4!Φ
±
m1...m4

γm1...m4 +
1

8!
Φ±

m1...m8
γm1...m8

}
, (4.5)

where P± := 1
2(1± γ9) is the chirality projector and Φ±

m1...mp
:= ξ±γm1...mp

ξ±. By a slight

abuse of notation, we use the same letter to denote both the bispinor and the associated

forms. It should be clear from the context which one is meant in each case. It will prove

more convenient to work with the linear combinations: Ψ± := 1
2(Φ+ ± Φ−). Moreover we

define

Ψ̂ := ξ+ ⊗ ξ− =
1

8
P+

∑

p=odd

1

p!
Ψ̂m1...mp

γm1...mp , (4.6)

where Ψ̂m1...mp
:= ξ+γm1...mp

ξ−. In the following we will find it useful to define the

combinations (cf. also equations (F.7), (F.8) of appendix F): Ψ̂± := 1
2(Ψ̂ ± ?Ψ̂).

The Majorana spinors (real pinors) ε± := 1√
2
(ξ+ ± ξ−) are nowhere-vanishing on X,

since 2|ε|2 = |ξ+|2 + |ξ−|2 = 1. Hence any bipinors constructed out of the ε’s are also

nowhere-vanishing. Setting

ρ± := ε± ⊗ ε± = Ψ+ ± Ψ̂−

ρ̂± := ε± ⊗ ε∓ = Ψ− ∓ Ψ̂+ , (4.7)

we note that Ψ±, Ψ̂± can be expressed as linear combinations of ρ, ρ̂. As discussed in

detail in section 2.1, these bipinors on X lift to bispinors on Y = X × S1. We shall call

the pair (ρ, ρ̂) a generalized Spin(7) structure on Y . Note that (ρ, ρ̂) induce a reduction

of the structure group Spin(9, 9) of TY ⊕ T ∗Y to Spin(7)× Spin(7). This follows from the

fact that ε± are nowhere-vanishing and therefore each of them induces a reduction of the

structure group of Y to Spin(7), as explained in 2.1.

As we show in appendix F, N = 1 supersymmetry implies that the generalized Spin(7)

structure, or equivalently the bispinors Ψ±, Ψ̂±, satisfy the following differential equations

0 = dΨ+ + F ∧ Ψ̂−

0 = e−3∆d(e3∆Ψ−) + ?F ∧ Ψ̂− − f ∧ Ψ+ + 4mΨ̂−

0 = e−3∆/2d(e3∆/2Ψ̂−)

0 = e−3∆/2d(e3∆/2Ψ̂+) + 2(?F ∧ Ψ+ − F ∧ Ψ−) + 8mΨ+ . (4.8)

In the terminology of [4, 7], the equations (4.8) above are the ‘form picture’ of the N = 1

supersymmetry equations given in the ‘spinor picture’ in (3.5)–(3.8). Note that, as is easy

to show, the integrability of (4.8) follows from the equations-of-motion and the Bianchi

identities.
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4.2 Reduction to seven dimensions

In the case where X is of the form Z×S1 and assuming no fields depend on the coordinate

of S1, we can perform a reduction to seven dimensions –upon which ξ± and ε± transform

in the 8 of Spin(7). Since as we noted above ε± are nowhere-vanishing, each of them

gives rise to a G2± ⊂ Spin(7) structure on Z. Indeed, G2 is the isotropy group of a

fundamental spinor inside Spin(7). Alternatively, this can be seen by noting that under

G2 ⊂ Spin(7) the fundamental spinor representation decomposes as 8 → 7+1, i.e. there is

a singlet in the decomposition. If ε± are nowhere parallel (equivalently: if ξ± are nowhere-

vanishing), there is a further reduction of the structure group of Z to the common subgroup

G2+ ∩ G2− = SU(3). In the generic case there are points in Z where ε± become parallel.

At these points the SU(3) structure is enhanced to G2+ ∩G2− = G2. This situation is best

described in the language of generalized G2 structures in seven dimensions [4, 7].

5. Conclusions

We have presented a formalism for supersymmetric M-theory compactifications on eight-

manifolds X, based on the group Spin(7). This is the most suitable language in which

to describe compactifications on eight-manifolds of Spin(7) structure, and/or small-flux

perturbations around compactifications on manifolds of Spin(7) holonomy. Although su-

persymmetry does not, in general, imply the reduction of the structure group of X itself,

our analysis leads naturally to the emergence of a nine-dimensional manifold Y = X × S1

whose structure group is reduced to Spin(7). This is reminiscent of the connection between

M- and F-theory: in the case where X admits an elliptic fibration, M-theory on X is equiv-

alent to F-theory on X × S1 [38]. It would be very interesting to explore this similarity

further.

In eight dimensions there exists a Hitchin functional involving a certain three-form

and its Hodge-dual five-form [9]. This does not seem to be related to the case considered

here: we generally do not have any nowhere-vanishing three-form on X. It would be

interesting to explore whether such a functional can be constructed using the four-forms

Φ± of section 4.1 and what should be the generalization of stability in this case. A related

point is that, as we have already noted in the introduction, in ten dimensions the NS and

RR fields play quite different roles with respect to the Hitchin functional construction [7];

this distinction disappears upon lifting to M-theory. It would also be desirable to know

whether equations (4.8) can be interpreted as some sort of integrability condition for the

generalized Spin(7) structures.

In type II theories the generalized picture provides a natural framework for T-duality

in topological models [34 – 36]. It would be interesting to explore this issue in the context

corresponding to the setup of this paper, i.e. in the context of an M- or F-theory topological

σ-model with target space the eight-manifold X. We expect T-duality to act as a sign flip:

ξ− → −ξ−. This amounts to an exchange ε+ ↔ ε− (cf. section 4.1), in analogy to the

situation in seven and six dimensions.

At a more mundane level, the present paper opens up the possibility for supersym-

metric solutions with all fluxes turned on and with an internal manifold in any of the
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four classes of Spin(7) manifolds. Any explicit examples of such manifolds are, of course,

desirable and could provide us with interesting physics; the physics of M theory on eight

manifolds is already very rich, even in the case where the internal manifold is special-

holonomy. Even in the absence of an explicit metric, the characterization of the most

general N = 1 backgrounds given in this paper should suffice for a Kaluza-Klein reduction

and the derivation of the resulting low-energy supergravity in three dimensions. It will be

interesting to pursue this point further.
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A. Gamma-matrix identities in 8d

The gamma matrices in eight dimensions have the following properties

Symmetry:

(Cγ(n))
Tr = (−)

1
2
n(n−1)Cγ(n) , (A.1)

where C is the charge-conjugation matrix.

Hodge-duality:

?γ(n) = (−)
1
2
n(n+1)γ(8−n)γ9 , (A.2)

where γ9 is the chirality matrix.

B. Identities relating to the Spin(7) structure

In this section we give a number of identities which we have used repeatedly in this paper.

These can be proved either by Fierzing or by fixing a special basis for the spinor η, as

in e.g. [37]. Given a positive-chirality Majorana spinor η of unit norm, we can define a

self-dual four-form as in (3.14), which can be seen to satisfy the following identities

ΦijklΦijkm = 42δl
m

ΦijklΦijpq = 12δkl
pq − 4Φkl

pq

ΦiklmΦipqr = 6δklm
pqr − 9Φ[kl

[pqδ
m]
r] . (B.1)

Moreover, we have

γijη = −1

6
Φij

klγklη

γijkη = −Φijk
lγlη

γijklη = Φ[ijk
mγl]mη + Φijklη

γijklmη = 5Φ[ijklγm]η . (B.2)
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We define the following projectors, acting on a second-rank tensor, onto the 7, 35 of

Spin(7):

(P 7)pq
mn :=

1

4

(
δp
[mδq

n] −
1

2
Φmn

pq
)

(B.3)

(P 21)pq
mn :=

3

4

(
δp
[mδq

n] +
1

6
Φmn

pq
)

(B.4)

(P 35)pq
mn := δp

(mδq
n) −

1

8
gmngpq . (B.5)

A useful identity is

(P 21)pq
rsγpqη = 0 . (B.6)

C. Spin(7) tensor decomposition

Let us decompose Fmnpq into irreducible representations

Fmnpq = F 1

mnpq + F 7

mnpq + F 27

mnpq + F 35

mnpq . (C.1)

Expanding

F 1

mnpq =
1

42
ΦmnpqF

1

F 7

mnpq =
1

24
Φ[mnp

iF 7

q]i

F 35

mnpq =
1

6
Φ[mnp

iF 35

q]i , (C.2)

where F 7
mn is antisymmetric in m,n whereas F 35

mn is symmetric and traceless, we obtain

FijkpΦ
ijk

q = gpqF
1 + F 7

pq + F 35

pq . (C.3)

In the above we have noted that

F 27

ijkpΦ
ijk

q = 0 . (C.4)

This can be seen immediately as follows: the left-hand side transforms in the 8 ⊗ 8 of

Spin(7), however 8 ⊗ 8 = 1 ⊕ 7 ⊕ 21 ⊕ 35 and there is no 27 in the decomposition.

Note that it follows from decomposition (C.2) that F 1, F 7 are self-dual while F 35 is anti

self-dual.

In deriving (D.2) below, we shall need the following decompositions.

LmF 7

pq = (P 7)ijpq

{
(L ⊗ F 7)48

mij + gmi(L ⊗ F 7)8j

}
(C.5)

LmF 35

pq = (P 35)ijpq

{
Φmi

kl(L ⊗ F 35)48

jkl + gmi(L ⊗ F 35)8j

}
+ · · · , (C.6)

where the ellipses stand for the irreducible representations which drop out of (D.2). These

expansions can be inverted to give

(L ⊗ F 7)8m =
8

7
LiF 7

im (C.7)
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(L ⊗ F 7)48

mpq = 6
(
L[mF 7

pq] +
1

7
Φmpq

jLiF 7

ij

)
(C.8)

and

(L ⊗ F 35)8m =
8

35
LiF 35

im (C.9)

(L ⊗ F 35)48

mpq =
3

20

(
LiF

35

j[mΦpq]
ij − 1

7
Φmpq

jLiF 35

ij

)
. (C.10)

The reader can verify that the right-hand sides of (C.8), (C.10) transform in the 48 of

Spin(7), as they should. Moreover, note that

(L ⊗ F 27)48

mpq := LiF 27

impq (C.11)

also transforms in the 48. Indeed the right-hand side is a three-form and therefore trans-

forms in the 83⊗a = 8 ⊕ 48. On the other hand, the right-hand side is the product of L,

F 27, and therefore transforms in the 8 ⊗ 27 = 48 ⊕ 168. It follows that the right-hand

side is in the 48 of Spin(7).

D. N = 1 supersymmetry

In this appendix we give the details of the derivation of equations (3.12), (3.16)–(3.18).

Taking decomposition (C.2) into account, the supersymmetry transformations (3.5)–(3.8)

can be seen to be equivalent to the following conditions.

Equation (3.5):

0 = ∂mR −
(

m +
1

24
F 1

)
Lm +

1

24
Li(F 7

im − F 35

im ) (D.1)

0 = (P 7)pq
rs

{
gmp

(
ω1

q −
1

4
fq + mLq

)
− ω2

mpq +
1

24
(LpΦq

ijkFmijk + 6LiFimpq)

}
, (D.2)

where we have parameterized ξ+ = eRη, ξ− = eRLmγmη. Equation (3.6):

0 = ∇mLn + ∂mRLn + Φn
ijkω2

mijLk − 2ω2
mniL

i + gmn

(
Liω1

i −
1

4
Lifi +

1

24
F 1 + m

)

− Lm

(
ω1

n − 1

4
fn

)
− Φmn

ijLi

(
ω1

j +
1

4
fj

)
+

1

24
(F 7

mn + F 35

mn) . (D.3)

Equation (3.7):

0 = mLm +
1

2

(
∂m∆ − 1

3
fm

)
+

1

36
LiF 35

im . (D.4)

Equation (3.8):

0 = m − 1

2
Li

(
∂i∆ +

1

3
fi

)
+

1

36
F 1 (D.5)

0 = (P 7)pq
rs

{
Lp∂q∆ +

1

3
Lpfq

}
+

1

144
F 7

rs . (D.6)
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Before proceding to the derivation of (D.1)–(D.6), let us mention that equation (3.12)

is derived as follows: multiplying (D.3) by Ln and using (D.1), we arrive at

∂mR = − Ln

1 + L2
∇mLn . (D.7)

Taking into account that ξ± can be rescaled by a real constant without loss of generality,

it follows that

eR =
1√

1 + L2
, (D.8)

which is equivalent to equation (3.12).

In deriving equations (D.1), (D.2), (D.5), (D.6) we have noted that the equation

Amη + Bm,pqγ
pqη = 0 , (D.9)

where (P 7)rs
pqBm,rs = Bm,pq, is equivalent to Am, Bm,pq = 0. This can be seen by multi-

plying on the left by η and ηγrs. Similarly, in deriving (D.3), (D.4) we have noted that the

equation

Am,nγnη = 0 (D.10)

is equivalent to Am,n = 0, as can be seen by multiplying on the left by ηγp.

Equation (D.2) can be used to solve for the intrinsic torsion as in (3.18), by taking

into account the following identities

0 = (P 7)pq
rs

{
Φpq

ab + 6δa
[pδ

b
q]

}
(D.11)

0 = (P 7)pq
rs

{
LpF

7

mq −
1

4
(L ⊗ F 7)48

mpq +
5

7
gmpL

iF 7

iq

}
(D.12)

0 = (P 7)pq
rs

{
LiΦimp

jF 7

qj +
1

4
(L ⊗ F 7)48

mpq −
12

7
gmpL

iF 7

iq

}
(D.13)

0 = (P 7)pq
rs

{
LpF

35

mq + 5(L ⊗ F 35)48

mpq −
1

7
gmpL

iF 35

iq

}
(D.14)

0 = (P 7)pq
rs

{
LiΦimp

jF 35

qj + 5(L ⊗ F 35)48

mpq +
6

7
gmpL

iF 35

iq

}
(D.15)

0 = (P 7)pq
rs

{
LpΦq

ijkFmijk + LiFjkmpΦq
ijk + 4LiFimpq

}
. (D.16)

In order to solve for the F 35 component of F , we first define

f35

mn := F 35

mn + 2

{
LiF 35

i(mLn) −
1

8
gmnLiLjF 35

ij

}

+
6

7
LiLjF 35

ij

(
LmLn − 1

8
gmnL2

)
, (D.17)
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which is the combination that appears in the symmetric, traceless part of (D.3). Note that

f35 indeed transforms in the 35 of Spin(7). Equation (D.3) can then be used to solve

for f35:

1

24
f35

mn +

(
∇(mLn) −

1

8
gmn∇L

)
+

1

4
Φ(m

ijk(L ⊗ F 27)48

n)ijLk

+
5

7

(
LmLn − 1

8
gmnL2

){
m(1 +

9

5
L2) +

9

5
Li∂i∆

}
= 0 , (D.18)

which can be solved for F 35 by inverting (D.17):

F 35

mn = f35

mn −
2Lif35

i(mLn)

1 + L2

+
LiLjf35

ij

(1 + L2)(1 + 3
4L2)

{
9

14
LmLn +

1

4
gmn(1 +

3

7
L2)

}
. (D.19)

Note that F 35
mn in (3.17) is traceless by virtue of

{
gmn − 2

LmLn

(1 + L2)

}
∇mLn − 4m(1 − L2) + 12Li∂i∆ = 0 , (D.20)

which is obtained by tracing equation (D.3). A straightforward manipulation then leads

to the second line of equation (3.16).

The 7 and 21 parts of (D.3) are treated similarly. Taking the identities

0 = (P 7)pq
rs

{
Φp

ijkω2
qijLk + 4ω2

pqiL
i
}

0 = (P 21)pq
rs

{
Φp

ijkω2
qijLk

}
(D.21)

into account, we arrive at

(∇[rLs])
7 = (P 7)mn

rs

{
Li∇iLmLn − 1

2
Lm∂nL2 + 3(1 + L2)Lm∂n∆

}
(D.22)

(∇[rLs])
21 = (P 21)mn

rs

{
Li∇iLmLn − 1

2
Lm∂nL2 + 3(1 + L2)Lm∂n∆

}
. (D.23)

It is then straightforward to show that the equations above are equivalent to the first

line of (3.16). Taking all the above into account, the expressions for the remaining flux

components f , F 1, F 7 are obtained by straightforward manipulations of equations (D.4),

(D.5), (D.6), respectively.

E. Spinor vs four-form

In this section we prove the equivalence of the two equations in (3.15). One needs to show

that the existence of the self-dual four-form Φ is equivalent to the existence of the chiral

spinor η (see e.g. [23]). The two equations in (3.15) are then essentially equivalent to the

statement that Φ, η are acted upon by the Levi-Civita, the (associated) spin connection

respectively, and that they are both Spin(7) singlets. More explicitly,
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(=⇒): Let us expand

∇mη = Amη + Bm,pqγ
pqη , (E.1)

where without lost of generality, as can be seen from the first line of equation (B.2), Bm,pq

can be taken to satisfy

Bm,pq = (P 7)rs
pqBm,rs . (E.2)

From (E.2) we can see immediately that

4B[m,pq] = Bi,j[mΦij
pq] − Φmpq

jBi
,ij (E.3)

Bi,jkΦ
ijk

m = −6Bi
,im , (E.4)

from which it follows that

Bm,pqγ
pqη = 6B[m,pq]γ

pqη + 4Bp
,pqγ

q
mη . (E.5)

Moreover, the fact that η has unit norm implies Am = 0. On the other hand, it follows

from the first line in (3.15) and (E.1) that

ω1
m = −8

7
Bi

,im (E.6)

ω2
mpq = 6(B[m,pq] +

1

7
Φmpq

jBi
,ij) . (E.7)

Taking (E.4) into account, we can see that the right-hand side of (E.7) transforms in the 48

of Spin(7), as of course it should. Collecting all the above, the second line of equation (3.15)

follows.

(⇐=): It can be shown that the four-form Φ satisfies the following useful identity [37]

1

24
εmnpq

ijkl =
1

168
ΦmnpqΦ

ijkl +
3

28
Φ[mn

[ijΦkl]
pq] +

2

21
Φ[i

[mnpΦq]
jkl] . (E.8)

Moreover, any Smnp in the 48 of Spin(7) satisfies

Smnp =
3

2
Φij

[mnSp]ij

Φm
ijkSijk = 0 . (E.9)

Using (E.8), (E.9), we can see that

εmnpqr
ijkω2

ijk = 60Φ[mnp
iω2

qr]i . (E.10)

Contracting the second line of (3.15) with ηγpqrs and using (E.10), (3.14), the first line of

equation (3.15) follows.
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F. Generalized Spin(7) structures

In this appendix we include the details of the derivation of equation (4.8). Multiply-

ing (3.7), (3.8) on the left by ξ+γm, ξ−γm respectively and subtracting, we obtain

FmijkΨ̂
ijk = 36Ψ−∂m∆ − 12Ψ+fm + 72mΨ̂m . (F.1)

Multiplying (3.5), (3.6) on the left by ξ+, ξ− respectively and adding/subtracting, tak-

ing (F.1) into account, we obtain

0 = ∂mΨ+

0 = e−3∆∂m(e3∆Ψ−) − Ψ+fm + 4mΨ̂m . (F.2)

Multiplying (3.7), (3.8) on the left by ξ+γmpqrs, ξ−γmpqrs respectively and adding/subtrac-

ting, we obtain

Ψ̂[mpq
ijFrs]ij = −6Ψ+

[mpqr∂s]∆ + 2Ψ−
[mpqrfs] + Ψ̂[mFpqrs]

Ψ̂[mp
iFqrs]i = −3Ψ−

[mpqr∂s]∆ + Ψ+
[mpqrfs] +

1

12
Ψ̂[mpqr

ijkFs]ijk −
6

5
mΨ̂mpqrs . (F.3)

Multiplying (3.5), (3.6) on the left by ξ+γpqrs, ξ−γpqrs respectively and adding/subtracting,

taking (F.3) into account as well as the identity

Ψ̂[mpqr
ijkFs]ijk = −6Ψ̂[m(?F )pqrs] , (F.4)

we obtain

0 = e−6∆∂[m(e6∆Ψ+
pqrs]) + F[mpqrΨ̂s]

0 = e−9∆∂[m(e9∆Ψ−
pqrs]) + (?F )[mpqrΨ̂s] − Ψ+

[mpqrfs] +
8

5
mΨ̂mpqrs . (F.5)

Rescaling the metric gmn → g′mn := e−3∆gmn has the effect that the gamma matrices also

get rescaled as: γm → e3∆/2γm. Passing to the bispinor notation in the rescaled metric

g′mn, equations (F.2), (F.5) can be written succinctly as

0 = dΨ+ + F ∧ Ψ̂−

0 = e−3∆d(e3∆Ψ−) + ?F ∧ Ψ̂− − f ∧ Ψ+ + 4mΨ̂− , (F.6)

where

Ψ̂− :=
1

2
(Ψ̂ − ?Ψ̂) =

1

8
P+

{
Ψ̂mγm +

1

5!
Ψ̂m1...m5γ

m1...m5

}
. (F.7)

We also define

Ψ̂+ :=
1

2
(Ψ̂ + ?Ψ̂) =

1

8
P+

{
1

3!
Ψ̂m1...m3γ

m1...m3 +
1

7!
Ψ̂m1...m7γ

m1...m7

}
. (F.8)
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Multiplying (3.7), (3.8) on the left by ξ−γmp, ξ+γmp respectively and adding, we obtain

1

12
F[m

ijkΨ+
p]ijk +

1

2
fiΨ̂

i
mp = −3Ψ̂[m∂p]∆ . (F.9)

Multiplying (3.5), (3.6) on the left by ξ−γp, ξ+γp respectively and adding, taking (F.9)

into account, we obtain

0 = ∂[m(e3∆Ψ̂p]) . (F.10)

Multiplying (3.7), (3.8) on the left by ξ−γmpqr, ξ+γmpqr respectively and subtracting, we

obtain

3

4
Ψ−

[mp
ijFqr]ij +

1

2
Ψ̂mpqr

ifi = −6Ψ̂[mpq∂r]∆ +
1

4
(?F )mpqrΨ

+ +
1

4
FmpqrΨ

− + 3mΨ+
mpqr .

(F.11)

Multiplying (3.5), (3.6) on the left by ξ−γpqr, ξ+γpqr respectively and adding, taking (F.11)

into account as well as the identity

1

24
Φ±

mpqr
n1...n4Fn1...n4 = ±Φ±(?F )mpqr , (F.12)

we obtain

0 = e−6∆∂[m(e6∆Ψ̂pqr]) +
1

4
(?F )mpqrΨ

+ − 1

4
FmpqrΨ

− + mΨ+
mpqr . (F.13)

Multiplying (3.7), (3.8) on the left by ξ−γmpqrst, ξ+γmpqrst respectively and subtracting,

we obtain

5Ψ+
[mpq

iFrst]i +
1

2
Ψ̂mpqrst

ifi = −9Ψ̂[mpqrs∂t]∆ +
1

4
Ψ+

[mpqrs
ijkFt]ijk . (F.14)

Multiplying (3.5), (3.6) on the left by ξ−γpqrst, ξ+γpqrst respectively and adding, tak-

ing (F.14) into account as well as the identity

0 = Ψ±
[mpqrs

ijkFt]ijk , (F.15)

we obtain

0 = ∂[m(e9∆Ψ̂pqrst]) . (F.16)

Multiplying (3.7), (3.8) on the left by ξ−γmpqrstuv, ξ+γmpqrstuv respectively and subtracting,

we obtain

12Ψ̂[mpqrstu∂v]∆ =
35

2
Ψ−

[mpqrFstuv] + 3mΨ+
mpqrstuv . (F.17)

Multiplying (3.5), (3.6) on the left by ξ−γpqrstuv, ξ+γpqrstuv respectively and subtracting,

taking (F.17) into account, we obtain

0 = ∂[m(e12∆Ψ̂pqrstuv]) + mΨ+
mpqrstuv . (F.18)
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Passing to the bispinor notation for the rescaled metric, taking into account the identity

(?F )[mpqrΨ
+

stuv] − F[mpqrΨ
−

stuv] = 0 , (F.19)

equations (F.10), (F.13), (F.16), (F.18) can be written succinctly as

0 = e−3∆/2d(e3∆/2Ψ̂−)

0 = e−3∆/2d(e3∆/2Ψ̂+) + 2(?F ∧ Ψ+ − F ∧ Ψ−) + 8mΨ+ . (F.20)

It is easy to see that the integrability of (F.6), (F.20) follows from the equations-of-motion

and Bianchi identities. The ‘asymmetry’ between Ψ± in equation (F.6) disappears in the

massless limit for constant warp factor and in the absence of fluxes along the noncompact

spacetime directions; i.e. for ∆ =constant, m, f = 0. In this case we have:

0 = dΨ+ + F ∧ Ψ̂−

0 = dΨ− + ?F ∧ Ψ̂−

0 = dΨ̂−

0 = dΨ̂+ + 2(?F ∧ Ψ+ − F ∧ Ψ−) (F.21)

The integrability of the above equations follows from the equations-of-motion and Bianchi

identities, which now read dF , d ? F = 0. Note, however, that setting m = 0 excludes

any solutions with nonzero fluxes if X is smooth and compact, as was already noted in

section 3.
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